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a b s t r a c t

The objective of a long-term stability experiment is to confirm analyte stability in a given biological matrix,
encompassing the duration of time from sample collection to sample analysis for a clinical or preclinical
study. While long-term analyte stability has been identified as a key component of bioanalytical method
validation, current regulatory guidance provides no specific recommendations regarding the design and
eywords:
tability
quivalence
egression

analysis of such experiments. This paper reviews and evaluates various experimental designs, data analysis
methods, and acceptance criteria for the assessment of long-term analyte stability. Statistical equivalence
tests based on linear regression techniques are advocated. Both a nested errors and bivariate mixed model
regression approach are suitable for application to long-term stability assessment, and control the risk of
falsely concluding stability.
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. Introduction

Bioanalytical methods for the quantitative determination of
rugs and their metabolites in biological matrices play a criti-
al role in the evaluation and interpretation of bioequivalence,
ioavailability, pharmacokinetic, and toxicokinetic studies. The
uality and integrity of these studies is dependent upon the qual-

ty and integrity of the underlying bioanalytical data. As such,
ell-characterized and fully validated bioanalytical methods are

ssential to ensure the safety and efficacy of pharmaceuticals.
A key aspect in the validation of bioanalytical methods is the

ssessment of analyte (drug and/or metabolite) stability in bio-
ogical matrices [1–9]. Various stability evaluations are performed
uring method validation, typically including: freeze–thaw stabil-

ty, processed sample stability, stock solution stability, short-term
emperature stability, and long-term stability. The proper assess-

ent of long-term analyte stability poses particular difficulties, and

s the subject of this paper.

The objective of a long-term stability experiment is to con-
rm analyte stability in a given biological matrix, encompassing

he duration of time from sample collection to sample analysis

� This paper is part of a special issue entitled “Method Validation, Comparison
nd Transfer”, guest edited by Serge Rudaz and Philippe Hubert.
∗ Corresponding author.

E-mail address: david.hoffman@sanofi-aventis.com (D. Hoffman).
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or a clinical or preclinical study. The stability experiment should
imic the conditions under which the study samples will be col-

ected, stored and processed [1]. Moreover, stability should be
ssessed in each matrix (e.g. plasma, urine, etc.) and species (e.g.
uman, dog, etc.) in which the analyte is to be quantified. This
ssessment is necessary to confirm that degradation after sample
ollection has not occurred, thus giving credibility to the final study
ata.

While long-term analyte stability has been identified as a key
omponent of bioanalytical method validation, current regula-
ory guidance provides no specific recommendations regarding
he design and analysis of such experiments. The purpose of this
aper is to review and evaluate various experimental designs, data
nalysis methods, and acceptance criteria for the assessment of
ong-term analyte stability.

. Experimental design

Long-term analyte stability assessment is performed by prepar-
ng stability samples at two or more nominal concentrations [1].
ypically, these stability samples are prepared by spiking control
blank) biological matrix with the analyte of interest. These stability

ools are then transferred into individual storage tubes represen-
ative of those intended for the long-term storage of study samples,
nd are stored (frozen) under the conditions that will be used for
he study samples. Long-term stability is then assessed by analysis
f the stability samples over an appropriate time frame (i.e. suffi-

http://www.sciencedirect.com/science/journal/15700232
http://www.elsevier.com/locate/chromb
mailto:david.hoffman@sanofi-aventis.com
dx.doi.org/10.1016/j.jchromb.2008.08.015
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ient to encompass or exceed the storage time anticipated for study
amples).

We consider two proposed experimental designs for long-term
tability assessment: a “standard” design and a “concurrent con-
rol” design.

The standard design is defined as follows. Stability samples are
repared as described above. Immediately following sample prepa-
ation or shortly thereafter, replicate samples are analyzed against
freshly prepared calibration curve. This can assess the accuracy of

he spiked sample preparations (i.e. confirm the nominal concen-
ration). The remaining samples are then stored as described above.
t pre-specified timepoints, replicate frozen stability samples are

hawed and analyzed against freshly prepared calibration curves.
The concurrent control design is identical to that of the standard

esign, with one modification: at each pre-specified timepoint,
eplicate “control” samples are analyzed concurrently with the
hawed stability samples against the same freshly prepared cali-
ration curve. The concurrent control samples can be prepared in
ne of two manners:

(i) At each pre-specified timepoint, replicate control samples are
freshly prepared at the same nominal concentration and ana-
lyzed against the same freshly prepared calibration curve.

ii) At the time of initial stability sample preparation, the samples
are divided into two subsets. The first subset (i.e. stability sam-
ples) is stored at the temperature intended for study samples,
as described previously. The second subset (i.e. control sam-
ples) is stored under temperatures less than −130 ◦C (e.g. in
liquid nitrogen or other suitable freezer). At each pre-specified
timepoint, replicates of both the stability samples and control
samples are analyzed against the same freshly prepared cali-
bration curve.

With either the standard or concurrent control design, cal-
ulated analyte concentrations are subject to both within-run
intra-batch) and between-run (inter-batch) random variability
ntrinsic to the analytical method. The use of concurrent controls
s intended to eliminate or minimize sources of between-run vari-
bility (e.g. calibration error) by including control samples in the
ame analytical run as the stability samples [10].

Theoretical calculations based on the Arrhenius equation, as
ell as published literature [11,12], indicate storage temperatures of
130 ◦C or below ensure stability even for unstable analytes. Thus,

amples prepared and stored as described in (ii) above may be suit-
ble for use as concurrent controls. It is recognized that the use of
oncurrent control samples prepared in this manner has been the
ubject of some debate [6]. This will not be addressed in the current
aper, except to note that the stability of such concurrent control
amples should be (at minimum) informally verified via graphi-
al inspection and/or descriptive statistics. The use of concurrent
ontrols which exhibit degradation similar to that of stability sam-
les over the storage time is improper and will result in an inflated
isk of falsely concluding stability. Freshly prepared control samples
as described in (i) above), by definition, will not exhibit degrada-
ion; however, this introduces random variability arising from the
reparation of different fresh control samples at each timepoint.

It should also be noted that stability samples could be prepared
y collecting or pooling incurred samples from dosed subjects,
ather than by spiking control matrix. However, the “nominal” con-

entration in such incurred samples will be unknown and must
e estimated from observed data. Appropriate data analysis proce-
ures for such samples must properly account for this additional
ource of variability. This is a topic for future investigation and will
ot be considered further in the current paper.
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. Data analysis methods

Specific recommendations for assessing long-term analyte sta-
ility are not defined in current regulatory guidance documents.
owever, a common approach is to evaluate long-term stability
sing the same criteria typically applied for evaluating accuracy and
recision of QC samples [4,7]. This approach (“4–6–15” rule) would
equire at least two thirds of the individual stability samples at
ach timepoint to be within, say, 15% of the respective nominal con-
entration. Another approach (“observed mean” rule) is to require
hat the observed mean concentration at each timepoint be within
5% of the nominal concentration [7]. While both the 4–6–15 and
bserved mean rules are easy to implement, they yield unknown
nd uncontrolled risks of incorrect stability decisions (failing to
etect a truly unstable analyte, or falsely concluding instability).
he deficiencies of these approaches are well documented [13,14].
s such, neither approach (nor other nonstatistical or ad-hoc rules)
ill be considered further.

When assessing long-term analyte stability, it is reasonable to
ssume that the risk of falsely concluding stability should be con-
rolled to a small probability (say, 5%), when the true degradation
s bioanalytically relevant (say, 15%). Thus, statistical equivalence
ests provide a logical framework for stability assessment [10,11,14].

statistical equivalence test is based on the set of hypotheses:

O : � ≤ −D or � ≥ D

s. HA : −D < � < D

here � is the true analyte degradation and D is the amount of true
nalyte degradation which is considered bioanalytically relevant
say, 15%). Rejection of the null hypothesis HO leads to a conclusion
f stability. An �-level equivalence test is typically conducted by
onstructing a two-sided (100 − 2˛)% confidence interval for �; if
he confidence interval lies entirely within the acceptance limits
−D, D), the null hypothesis HO is rejected. This equivalence testing
pproach controls the risk of falsely rejecting HO (i.e. falsely con-
luding stability when the true degradation is D) at ˛% (say, 5%).
ll statistical methods considered for further investigation in this
aper are based on equivalence tests at the ˛ = 5% level.

.1. Simple linear regression

The problem of assessing long-term analyte stability in biolog-
cal matrices is similar to that of determining shelf-life for drug
roduct. For determination of drug product shelf-life, many quan-
itative chemical attributes (e.g. assay and degradation product)
re assumed to follow zero-order kinetics during long-term stor-
ge [15]. Thus, linear regression analysis is generally considered an
ppropriate approach for evaluating long-term stability data and
he performance characteristics of such an approach have been well
xamined [16,17]. Similar reasoning suggests that the relationship
etween analyte concentrations in biological matrices and stor-
ge time can be represented by a linear function (perhaps after
ppropriate data transformation, if necessary). Linear regression
echniques have also been previously proposed for assessing short-
erm stability of analytes in biological matrices [14]. As such, the
se of linear regression techniques for assessing long-term analyte
tability in biological matrices is advocated.
The simple linear regression approach consists of regressing the
alculated stability sample analyte concentrations on storage time
ia the following model:

ij = ˇ0 + ˇ1xi + εij (1)
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here yij is the calculated analyte concentration for the jth stability
ample replicate at the ith timepoint, xi is the ith timepoint, and εij
s the random error for yij, with εij assumed to be independently
nd normally distributed with mean zero and variance �2

E .
At any fixed timepoint x, a 90% two-sided confidence interval

or the mean analyte concentration is constructed from the fitted
egression model: ŷ = ˆ̌ 0 + ˆ̌ 1x. The analyte is considered stable
t a given timepoint if the 90% two-sided confidence interval lies
ntirely within pre-specified acceptance limits (say, ±15% of the
ominal concentration).

.2. Nested errors regression

The simple linear regression model above ignores the between-
un (inter-batch) random errors induced by assay calibration at
ach timepoint. The simple linear model assumes that all calcu-
ated analyte concentrations are statistically independent of each
ther. This assumption will not be satisfied with long-term stability
ata, as calculated concentrations obtained against a common cal-

bration curve will be correlated (i.e. by the between-run random
rror at each timepoint).

A nested errors linear regression model can appropriately
ccount for both between-run and within-run random errors inher-
nt in long-term stability data [18]. The nested errors regression
pproach consists of regressing the calculated stability sam-
le analyte concentrations on storage time via the following
odel:

ij = ˇ0 + ˇ1xi + �i + εij (2)

here yij is the calculated analyte concentration for the jth stability
ample replicate at the ith timepoint, xi is the ith timepoint, � i is
he random error associated with the ith timepoint, and εij is the
andom error for yij. The random errors � i and εij are assumed to
e independently and normally distributed with means zero and
ariances �2

B and �2
E , respectively. These variances, �2

B and �2
E ,

orrespond to the between-run and within-run variability of the
nalytical method, respectively.

At any fixed timepoint x, a 90% two-sided confidence interval
or the mean analyte concentration is constructed from the fit-
ed regression model: ŷ = ˆ̌ 0+ ˆ̌ 1x. The analyte is considered stable
t a given timepoint if the 90% two-sided confidence interval lies
ntirely within the pre-specified acceptance limits.

.3. Bivariate mixed model regression

Both the simple linear and nested errors regression approaches
bove are applicable to long-term stability studies utilizing
he standard experimental design described previously. Neither
pproach allows for inclusion of data from concurrent control sam-
les, which may minimize or eliminate the impact of between-run
rrors in the stability assessment.

One simple approach to incorporate data from concurrent
ontrol samples would be to “normalize” the stability sample
nalyte concentrations by the mean control sample analyte con-
entration at each timepoint. However, if the between-run and
ithin-run random errors are assumed to follow a normal distribu-

ion, then the “normalized” random errors (i.e. ratio of errors) will
e non-normally distributed. Furthermore, this simple approach
resupposes a high degree of correlation between the stability and

ontrol samples at each timepoint. While this should be typically
xpected (and is the ideal outcome), it is possible that the stability
nd control samples may exhibit poor correlation (e.g. due to poor
recision when spiking fresh control samples at each timepoint or
ossible matrix effects arising from storage at temperatures below

(

9

. B 877 (2009) 2262–2269

130 ◦C). In such cases, simple normalization will be detrimen-
al, causing inflated variability and resulting in poorer precision
f stability estimates.

A more flexible approach to incorporate data from concurrent
ontrol samples is to jointly model the stability sample and con-
rol sample data in a bivariate mixed model. The bivariate mixed

odel regression approach consists of jointly regressing the calcu-
ated stability sample and control sample analyte concentrations
n storage time via the following model:

yij = ˇ0 + ˇ1xi + �i + εij

zik = ˇ0 + ıi + �ik
(3)

here yij is the calculated analyte concentration for the jth stability
ample replicate at the ith timepoint, zik is the calculated analyte
oncentration for the kth control sample replicate at the ith time-
oint, xi is the ith timepoint, � i is the random error associated with
he ith timepoint for the stability samples, ıi is the random error
ssociated with the ith timepoint for the control samples, �ij is the
andom error for yij, and �ik is the random error for zij.

The within-run random errors εij and �ik are assumed to be inde-
endently and normally distributed with means zero and variances
2
E1 and �2

E2, respectively. These variances, �2
E1 and �2

E2, corre-
pond to the within-run variability of the stability and control
amples, respectively.

The between-run random errors � i and ıi are assumed to follow
bivariate normal distribution with means zero and covariance
atrix ˙ given by:

=
(

�2
B1 ��B1�B2

��B1�B2 �2
B2

)

The variances �2
B1 and �2

B2 correspond to the between-run
ariability of the stability and control samples, respectively. The
orrelation parameter � corresponds to the correlation of the
etween-run random errors for the stability and controls samples
nalyzed at a given timepoint (i.e. against a common calibration
urve).

Note that the model could also be simplified by reasonably
ssuming the within-run and between-run variances to be iden-
ical for both the stability and control samples (i.e. �2

E1 = �2
E2 =

2
E and �2

B1 = �2
B2 = �2

B).
As with the simple linear and nested error approaches, a 90%

wo-sided confidence interval for the mean analyte concentration
t any fixed timepoint x is constructed from the fitted regression
odel: ŷ = ˆ̌ 0+ ˆ̌ 1x. The analyte is considered stable at a given time-

oint if the 90% two-sided confidence interval lies entirely within
he pre-specified acceptance limits.

. Results

The performances of the simple linear, nested errors, and
ivariate mixed model regression approaches were evaluated via
imulation techniques. For all simulations performed, the following
onditions were assumed:

1) sampling timepoints at 0, 3, 6, 9, 12, 18, and 24 months;
2) true within-run and between-run variances, �2

E and �2
B , yield-

ing a true total variance (�2
TOT = �2

B + �2
E ) equivalent to a 10%

total coefficient of variation (%CV);

3) normally distributed within-run and between-run random

errors.

All simulations were performed using SAS software (version
.1), and all regression models fit with the MIXED procedure.



D. Hoffman et al. / J. Chromatogr. B 877 (2009) 2262–2269 2265

F
r

4

c
a
t

v
f
r
a
c
e
a
d
l
f
r
e

a

p
c
w
e
i
1
c
v
I
a
F
(
c

4

e
n
s
t

F
s

f
w
o
±

a

a
o
n
r
t

o
p
c
s
s

t
V
e
l
d
a
p
a
d
l

t
2

r
m
t
t
i
t

ig. 1. Type I error rate versus � = �2
B /(�2

B + �2
E ) for simple linear and nested errors

egression approaches. Reference line at nominal type I error rate of 0.05.

.1. Simple linear regression approach

A standard experimental design with six stability sample repli-
ates at each timepoint was assumed. Analyte concentrations were
ssumed to degrade linearly over time, with a true loss of 15% at
he 24-month timepoint.

Let the proportion of total variability (�2
TOT) due to between-run

ariability (�2
B) be denoted by �. For various values of � (ranging

rom 0.0 to 0.99), 2500 datasets were simulated. The simple linear
egression model shown in Eq. (1) was fit to each simulated dataset
nd the 90% two-sided confidence interval for the mean analyte
oncentration at the 24-month timepoint was formed. The type I
rror of the simple linear regression approach was then estimated
s the proportion of confidence intervals (out of 2500 simulated
atasets) which were entirely contained within ±15% acceptance

imits. Note that the type I error can be viewed as the probability of
alsely concluding stability (i.e. the true loss is at the bioanalytically
elevant limit of 15%, but the 90% two-sided confidence interval lies
ntirely within the acceptance limits).

Fig. 1 gives the type I error rate of the simple linear regression
pproach as a function of � = �2

B/(�2
B + �2

E ).
The results in Fig. 1 clearly indicate the inadequacy of the sim-

le linear regression approach. Recall that the probability of falsely
oncluding stability should be controlled at 5% for a true loss of 15%
hen using statistical equivalence tests as described earlier. How-

ver, the type I error rate of the simple linear regression approach
ncreases dramatically with �, and is nearly 30% when � is close to
.0. This is because the simple linear regression model ignores the
orrelated nature of the data. Note that when � = 0, the between-run
ariability is zero and the analyte concentrations are uncorrelated.
n this scenario, the simple linear regression approach is appropri-
te and the type I error rate is maintained at 5% (as shown in Fig. 1).
or typical long-term stability studies, � is likely to be quite large
say, � > 0.50). Thus, the simple linear regression approach is a poor
hoice for application in long-term stability analyses.

.2. Nested errors regression approach
The type I error of the nested errors regression approach was
stimated using the same simulated data described above. The
ested errors regression model shown in Eq. (2) was fit to each
imulated dataset and the 90% two-sided confidence interval for
he mean analyte concentration at the 24-month timepoint was

i
m
w
t
l

ig. 2. Power to conclude stability versus � = �2
B /(�2

B + �2
E ) for nested errors regres-

ion approach, for various true loss.

ormed. The type I error of the nested errors regression approach
as then estimated as the proportion of confidence intervals (out

f 2500 simulated datasets) which were entirely contained within
15% acceptance limits.

Fig. 1 gives the type I error rate of the nested errors regression
pproach as a function of � = �2

B/(�2
B + �2

E ).
The results in Fig. 1 indicate that the nested errors regression

pproach controls the risk of falsely concluding stability, regardless
f the value of �. Unlike the simple linear regression approach, the
ested errors approach appropriately accounts for both between-
un and within-run random errors and thus maintains control of
he type I error rate.

The nested errors regression approach clearly controls the risk
f falsely concluding stability. It is also of interest to assess the
ower of the nested errors regression approach to correctly con-
lude stability (i.e. the probability of concluding stability for a truly
table analyte). As before, a standard experimental design with six
tability sample replicates at each timepoint was assumed.

Analyte concentrations were assumed to degrade linearly over
ime, with a true loss of 0%, 2.5%, or 5% at the 24-month timepoint.
arious values of �, ranging from 0.0 to 0.99, were considered. For
ach combination of true loss and �, 2500 datasets were simu-
ated. The nested errors regression model was fit to each simulated
ataset and the 90% two-sided confidence interval for the mean
nalyte concentration at the 24-month timepoint formed. The
ower of the nested errors regression approach was then estimated
s the proportion of confidence intervals (out of 2500 simulated
atasets) which were entirely contained within ±15% acceptance

imits.
Fig. 2 gives the power of the nested errors regression approach

o conclude stability versus � = �2
B/(�2

B + �2
E ), for true losses of 0,

.5, and 5%.
The results in Fig. 2 show that the power of the nested errors

egression approach to correctly conclude stability decreases dra-
atically with increasing �. Even for analytes with no true loss,

he power to conclude stability is poor for � > 0.20. The power of
he nested errors regression approach could be improved by utiliz-
ng a larger sample size (i.e. more timepoints and/or replicates per
imepoint). However, the sample size considered in the simulation

s reasonably large (six replicates at each of seven timepoints) and

uch larger sample sizes may be prohibitive in practice. The power
ill also increase as the true total %CV decreases. Recall the true

otal %CV is 10% for the simulated data (this is likely quite typical for
ong-term stability data). Yet regardless of the sample size or true
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ig. 3. Type I error rate versus � = �2
B /(�2

B + �2
E ) for bivariate mixed model regressi

otal %CV, the power of the nested errors regression approach will
ecrease as the relative magnitude of the between-run variability

ncreases (i.e. as � increases).
It should also be noted that the power of the nested errors

egression approach may be improved by a modification to the stan-
ard experimental design defined previously: at each timepoint,
he stability sample replicates are analyzed over multiple analytical
uns rather than in a single run. Performing multiple independent
uns at each timepoint increases the precision of the stability esti-

ates and thus increases the power to correctly conclude stability.
ote that this assumes complete independence of the analytical

uns at each timepoint, which may be unrealistic in practice. Fail-
re to meet this assumption (e.g. due to variability induced by assay
rift over time, etc.) would mitigate any increases in power.

.3. Bivariate mixed model regression approach

A concurrent control experimental design with six stability
eplicates and six control sample replicates (at timepoints subse-
uent to 0 month) at each timepoint was assumed. For simplicity,
he stability and control samples were assumed to have identi-
al true within-run variance (�2

E1 = �2
E2 = �2

E ) and identical true
etween-run variance (�2

B1 = �2
B2 = �2

B). Analyte concentrations for
he stability samples were assumed to degrade linearly over time,
ith a true loss of 15% at the 24-month timepoint. Analyte con-

entrations for the control samples were assumed to have no true
egradation over time.

As before, let the proportion of total variability (�2
TOT) due to

etween-run variability (�2
B) be denoted by �. Let � be the correla-

ion of the between-run random errors for the stability and control
amples. Values of � ranging from 0.0 to 0.99 and � values of 0,
.25, 0.50, 0.75, 0.90, and 0.95 were considered. For each combina-
ion of � and �, 2500 datasets were simulated. The bivariate mixed

odel shown in Eq. (3) was fit to each simulated dataset and the
0% two-sided confidence interval for the mean stability sample
nalyte concentration at the 24-month timepoint formed. The type

error of the bivariate mixed model regression approach was then
stimated as the proportion of confidence intervals (out of 2500
imulated datasets) which were entirely contained within ±15%
cceptance limits.

i
t
a
i

roach, for various correlation �. Reference line at nominal type I error rate of 0.05.

Fig. 3 shows the type I error rate for the bivariate mixed model
egression approach as a function of �, for various correlation
arameter �.

Fig. 3 indicates that the bivariate mixed model regression
pproach generally controls the risk of falsely concluding stability.
or large values of � (i.e. large between-run variability) and small
alues of � (i.e. poor correlation of stability and control samples),
he type I error rate is slightly inflated above the nominal 5%. How-
ver, the type I error rate is never more than approximately 8%.
or more typical scenarios (� > 0.50), the type I error rate is at (or
elow) the nominal 5% level.

As with the nested errors regression approach, the bivariate
ixed model regression approach controls the risk of falsely con-

luding stability. Now it is of interest to assess the power of the
ivariate mixed model regression approach to correctly conclude
tability.

As above, a concurrent control experimental design with six sta-
ility sample replicates and six control sample replicates at each
imepoint was assumed. The true loss for both stability and con-
rol samples was assumed to be 0%. Various values of � and �
ere considered as previously. For each combination of � and �,

500 datasets were simulated and the power of the bivariate mixed
odel regression approach estimated as described previously. For

omparative purposes, the nested errors regression model was
lso fit to each simulated dataset (ignoring data from the control
amples) and the power of the nested errors regression approach
stimated as well.

Fig. 4 shows the power of the bivariate mixed model and nested
rrors regression approaches to conclude stability versus �, for var-
ous correlation �.

Fig. 4 illustrates the increase in the power to correctly conclude
tability which can be obtained with the concurrent control design.
ote that when the correlation � is small, the power of the nested
rrors and bivariate mixed model regression approaches is roughly
qual. In these cases, the correlation between the stability and con-
rol samples is poor, and the control samples do not reduce the

mpact of between-run random variability. However, as the correla-
ion � increases, the power of the bivariate mixed model regression
pproach increases accordingly. For values of � ≥ 0.50, the increase
n power is substantial, as the control samples reduce the impact of



D. Hoffman et al. / J. Chromatogr. B 877 (2009) 2262–2269 2267

F el and

b
e

5

a
l
e

p
r
p
a
c
a
9
g
a

a
w
w

t
fi
d
fi
v
l

c
i
v
o
n
t
c
2
(
w

T
C

M

0

M

2

ig. 4. Power to conclude stability versus � = �2
B /(�2

B + �2
E ) for bivariate mixed mod

etween-run variability and increase the precision of the stability
stimates.

. Example

The nested errors and bivariate mixed model regression
pproaches are illustrated by application to data from an actual
ong-term stability experiment utilizing a concurrent control
xperimental design.

A plasma pool was spiked at 200 ng/mL of analyte and six sam-
les were analyzed immediately following pool preparation. The
emaining plasma pool was divided into two subsets (stability sam-
les and control samples). Stability samples were stored at −20 ◦C
nd control samples at less than −130 ◦C. Six stability sample repli-
ates and six control sample replicates were then thawed and
nalyzed against a freshly prepared calibration curve after 1, 3, 6,
, 12, 18, and 24 months of storage. The raw concentration data are
iven in Table 1 (note that four observations were missing due to

nalytical issues and are indicated by ‘–’ in the table).

Both the nested errors and bivariate mixed model regression
pproaches were applied to the data. The nested errors model
as fit using only calculated concentrations from stability samples,
hile the bivariate mixed model was fit using calculated concen-

t
c
b
c
t

able 1
alculated concentrations (ng/mL)

onth Fresh samples

Rep1 Rep2 Rep3

192 204 196

onth Stability samples (−20 ◦C)

Rep1 Rep2 Rep3 Rep4 Rep5 Rep6

1 220 223 214 219 209 217
3 188 185 192 187 185 194
6 167 147 141 180 – –
9 188 200 183 183 189 196

12 179 180 173 197 183 182
18 183 179 188 192 188 193

4 210 200 199 201 203 207
nested errors regression approaches, for various correlation �. True loss is 0%.

rations from both stability and control samples. Fig. 5 shows the
tted nested errors regression model with two-sided 90% confi-
ence interval for the mean analyte concentration. Fig. 6 shows the
tted bivariate mixed model with two-sided 90% confidence inter-
al for the mean analyte concentration. Note that ±15% acceptance
imits correspond to (170, 230) ng/mL.

Fig. 5 indicates substantial between-run variability in the cal-
ulated concentrations of the stability samples. This variability
s reflected in the width of the two-sided 90% confidence inter-
al about the fitted regression line. The estimated proportion
f variability due to between-run variability based on the fitted
ested errors regression model is �̂ = 0.85, with an estimated
otal %CV of 9.8%. At the 24-month timepoint, the two-sided 90%
onfidence interval for the mean analyte concentration is (162,
16) ng/mL, which falls slightly outside the acceptance limits of
170, 230) ng/mL. Thus, with the nested errors regression approach,
e cannot conclude the analyte is stable at 24 months.

Fig. 6 shows good correlation between the stability and con-

rol samples. The estimated correlation of the stability sample and
ontrol sample between-run random errors based on the fitted
ivariate mixed model is �̂ = 0.93. This strong correlation dramati-
ally reduces the impact of the between-run random variability on
he precision of the stability estimates and is reflected in the nar-

Rep4 Rep5 Rep6

204 208 202

Control samples (<−130 ◦C)

Rep1 Rep2 Rep3 Rep4 Rep5 Rep6

221 219 222 219 210 215
190 200 194 196 194 191
172 176 177 174 175 172
198 193 191 194 195 196
189 182 179 176 176 –
198 197 195 195 194 201
199 201 198 193 199 –
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Fig. 5. Fitted nested errors regression model with two-sided 90% confidence inter-
val. Calculated concentrations for stability samples given by open circles. Acceptance
limits shown at (170, 230) ng/mL.
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ig. 6. Fitted bivariate mixed model with two-sided 90% confidence interval. Cal-
ulated concentrations for stability samples given by open circles and for control
amples by closed circles. Acceptance limits shown at (170, 230) ng/mL.

ow confidence bounds about the fitted regression line. Note that at
he 24-month timepoint, the two-sided 90% confidence interval for
he mean analyte concentration is (178, 208) ng/mL. This interval
ies entirely within the acceptance limits (170, 230) ng/mL and we
an conclude the analyte is stable at 24 months.

. Conclusions

Current regulatory guidance provides no specific recommenda-
ions for the design and analysis of long-term stability experiments,
nd acceptance criteria based on commonly used ad-hoc rules (such
s “4–6–15” rule) do not control the risks of incorrect stability
ecisions. There is a clear need for statistically sound experimen-
al design and data analysis procedures which control the risk of
alsely concluding stability (for truly unstable analytes) and provide
easonable power to correctly conclude stability (for truly stable

nalytes).

Various linear regression techniques for the analysis of long-
erm stability data were proposed and evaluated. Simple linear
egression, commonly used for the determination of drug product
helf-life, is a poor choice for assessing long-term analyte stability

:

2

;

g

. B 877 (2009) 2262–2269

n biological matrices. Simple linear regression does not account
or between-run sources of variability inherent in long-term sta-
ility data and thus fails to control the risk of falsely concluding
tability.

Both a nested errors and bivariate mixed model regression
pproach properly account for between-run and within-run ran-
om variability, and control the risk of falsely concluding stability.
he nested errors approach can suffer from poor power to cor-
ectly conclude stability when the between-run variability is large.
owever, analyzing stability samples over multiple independent
nalytical runs (rather than in a single run) at each timepoint may
mprove the power of the nested errors regression approach. The
ivariate mixed model approach incorporates data from control
amples analyzed concurrently with stability samples at each time-
oint. When the stability and control samples exhibit a high degree
f correlation, the bivariate mixed model approach yields stabil-

ty estimates with increased precision and thus greater power to
orrectly conclude stability. Both the nested errors and bivariate
ixed model regression approaches can be implemented by sta-

istical software packages, such as SAS. Representative SAS code is
rovided in the Appendix A.

It should be noted that both the nested errors and bivariate
ixed model regression approaches offer improved performance

relative to common ad-hoc rules or the simple linear regres-
ion approach) for little added cost or resource expenditure. The
ested errors regression approach simply utilizes data that is typ-

cally generated during a standard long-term stability experiment,
ut provides an appropriate data analysis model which controls
he risk of falsely concluding stability. The bivariate mixed model
pproach can offer a substantial increase in the power to cor-
ectly conclude stability, though it requires the use of a concurrent
ontrol experimental design. However, this approach could be
mplemented with freshly prepared QC samples that are typically
ncluded in each run for in-process monitoring. Even if samples
tored at less than −130 ◦C are utilized as concurrent controls, the
ost of analyzing these additional samples in each run is likely
inimal.

The use of linear regression techniques requires the assump-
ion of zero-order stability kinetics during long-term storage, which

ay be violated (e.g. enzymatic degradation). The assumption of
inearity should be verified by examination of the fitted regression

odel (e.g. graphical inspection of residuals, etc.). If the rela-
ionship between the analyte concentrations and storage time is
learly nonlinear (or cannot be linearized by appropriate data trans-
ormation), then nonlinear regression techniques may be more
ppropriate. This may be a topic for further investigation.

ppendix A

.1. SAS code for nested errors regression model

A useful data format for fitting the nested errors regression
odel using the SAS MIXED procedure is given in the dataset

ested (excerpt of raw data shown). The variables Conc and Time
efer to the observed concentrations and timepoints, respectively.
he variable Time Random is a duplicate of the Time variable, to
odel the nested structure of the random errors.

ATA nested;

NPUT Time Time Random Conc;

ARDS;
: :

4 24 207

Sample MIXED code to fit the nested errors regression model is
iven by:
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ROC MIXED data=nested;

LASS Time Random;

ODEL Conc=Time / ddf=6;

ANDOM Time Random;

STIMATE ‘Mean Conc @ Time=24′ Int 1 Time 24/ cl alpha=0.10;

Note that the degrees of freedom should be directly specified
n the MODEL statement, as the MIXED procedure may otherwise
verestimate the degrees of freedom. The proper degrees of free-
om will generally be equal to the total number of timepoints
or independent analytical runs) minus 2. The MIXED code above
ssumes an experiment with 8 timepoints, as in the real example
iven in the text (i.e. timepoints at 0, 1, 3, 6, 9, 12, 18, and 24 months).

.2. SAS code for bivariate mixed model

A useful data format for fitting the bivariate mixed model
sing the SAS MIXED procedure is given in the dataset bivari-
te (excerpt of raw data shown). The variables Conc, Time,
ime Random are as described before. The variable Sample Type

dentifies the stability and control samples, and the variable Indi-
ate is an indicator variable which takes the value 1 for stability
amples and 0 for control samples.
ATA bivariate;

NPUT Time Time Random Sample Type$ Indicate Conc;

ARDS;

0 Stability 1 204
: : ::

4 24 Stability 1 207

1 Control 0 221

: : ::

4 24 Control 0 199

[
[

B 877 (2009) 2262–2269 2269

Sample MIXED code to fit the bivariate mixed model is given by:
ROC MIXED data=bivariate;

LASS Time Random Sample Type;

ODEL Conc=Indicate*Time / ddf=6;

ANDOM Sample Type / subject=Time Random type=FA0(2);

EPEATED Time Random / group=Sample Type;

STIMATE ‘Mean Conc @ Time=24’ Int 1 Indicate*Time 24/ cl alpha=0.10;
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